Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtre
1.
researchsquare; 2024.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3877429.v1

Résumé

Secondary bacterial pneumonia (2°BP) is associated with significant morbidity following respiratory viral infection, yet mechanistically remains incompletely understood. In a prospective cohort of 112 critically ill adults intubated for COVID-19, we comparatively assessed longitudinal airway microbiome dynamics and studied the pulmonary transcriptome of patients who developed 2°BP versus controls who did not. We found that 2°BP was significantly associated with both mortality and corticosteroid treatment. The pulmonary microbiome in 2°BP was characterized by increased bacterial RNA load, dominance of culture-confirmed pathogens, and lower alpha diversity. Bacterial pathogens were detectable days prior to 2°BP clinical diagnosis, and in most cases were also present in nasal swabs. Pathogen antimicrobial resistance genes were also detectable in both the lower airway and nasal samples, and in some cases were identified prior to 2°BP clinical diagnosis. Assessment of the pulmonary transcriptome revealed suppressed TNFa signaling via NF-kB in patients who developed 2°BP, and a sub-analysis suggested that this finding was mediated by corticosteroid treatment. Within the 2°BP group, we observed a striking inverse correlation between innate and adaptive immune gene expression and bacterial RNA load. Together, our findings provide fresh insights into the microbial dynamics and host immune features of COVID-19-associated 2°BP.


Sujets)
Infections de l'appareil respiratoire , COVID-19 , Pneumopathie bactérienne
2.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1209107.v1

Résumé

The continued emergence of SARS-CoV-2 variants is one of several factors that may cause false negative viral PCR test results. Such tests are also susceptible to false positive results due to trace contamination from high viral titer samples. Host immune response markers provide an orthogonal indication of infection that can mitigate these concerns when combined with direct viral detection. Here, we leverage nasopharyngeal swab RNA-seq data from patients with COVID-19, other viral acute respiratory illnesses and non-viral conditions (n=318) to develop support vector machine classifiers that rely on a parsimonious 2-gene host signature to predict COVID-19. Optimal classifiers achieve an area under the receiver operating characteristic curve (AUC) greater than 0.9 when evaluated on an independent RNA-seq cohort (n=553). We show that a classifier relying on a single interferon-stimulated gene, such as IFI6 or IFI44, measured in RT-qPCR assays (n=144) achieves AUC values as high as 0.88. Addition of a second gene, such as GBP5, significantly improves the specificity compared to other respiratory viruses. The performance of a clinically practical 2-gene RT-qPCR classifier is robust across common SARS-CoV-2 variants, including Omicron, and is unaffected by cross-contamination, demonstrating its utility for improving accuracy of COVID-19 diagnostics.


Sujets)
COVID-19
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.06.21268498

Résumé

The continued emergence of SARS-CoV-2 variants is one of several factors that may cause false negative viral PCR test results. Such tests are also susceptible to false positive results due to trace contamination from high viral titer samples. Host immune response markers provide an orthogonal indication of infection that can mitigate these concerns when combined with direct viral detection. Here, we leverage nasopharyngeal swab RNA-seq data from patients with COVID-19, other viral acute respiratory illnesses and non-viral conditions (n=318) to develop support vector machine classifiers that rely on a parsimonious 2-gene host signature to predict COVID-19. Optimal classifiers achieve an area under the receiver operating characteristic curve (AUC) greater than 0.9 when evaluated on an independent RNA-seq cohort (n=553). We show that a classifier relying on a single interferon-stimulated gene, such as IFI6 or IFI44, measured in RT-qPCR assays (n=144) achieves AUC values as high as 0.88. Addition of a second gene, such as GBP5, significantly improves the specificity compared to other respiratory viruses. The performance of a clinically practical 2-gene RT-qPCR classifier is robust across common SARS-CoV-2 variants, including Omicron, and is unaffected by cross-contamination, demonstrating its utility for improving accuracy of COVID-19 diagnostics.


Sujets)
COVID-19
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.15.21260285

Résumé

Unlike other respiratory viruses, SARS-CoV-2 disproportionately causes severe disease in older adults and only rarely in children. To investigate whether differences in the upper airway immune response could contribute to this disparity, we compared nasopharyngeal gene expression in 83 children (<19-years-old; 38 with SARS-CoV-2, 11 with other respiratory viruses, 34 with no virus) and 154 adults (>40-years-old; 45 with SARS-CoV-2, 28 with other respiratory viruses, 81 with no virus). Expression of interferon-stimulated genes (ISGs) was robustly activated in both children and adults with SARS-CoV-2 compared to the respective non-viral groups, with only relatively subtle distinctions. Children, however, demonstrated markedly greater upregulation of pathways related to B cell and T cell activation and proinflammatory cytokine signaling, including TNF, IFN{gamma}, IL-2 and IL-4 production. Cell type deconvolution confirmed greater recruitment of B cells, and to a lesser degree macrophages, to the upper airway of children. Only children exhibited a decrease in proportions of ciliated cells, the primary target for SARS-CoV-2, upon infection with the virus. These findings demonstrate that children elicit a more robust innate and adaptive immune response to SARS-CoV-2 infection in the upper airway that likely contributes to their protection from severe disease in the lower airway.


Sujets)
COVID-19
5.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-380803.v1

Résumé

Secondary bacterial infections, including ventilator-associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections including in patients with coronavirus disease 2019 (COVID-19). Using a combination of tracheal aspirate bulk and single-cell RNA sequencing (scRNA-seq) we assessed lower respiratory tract immune responses and microbiome dynamics in 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill uninfected controls. Two days before VAP onset we observed a transcriptional signature of bacterial infection. Two weeks prior to VAP onset, following intubation, we observed a striking impairment in immune signaling in COVID-19 patients who developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients with VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. These findings suggest that COVID-19 patients who develop VAP have impaired antibacterial immune defense detectable weeks before secondary infection onset.


Sujets)
COVID-19
6.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.23.21253487

Résumé

Secondary bacterial infections, including ventilator associated pneumonia (VAP), lead to worse clinical outcomes and increased mortality following viral respiratory infections. Critically ill patients with coronavirus disease 2019 (COVID-19) face an elevated risk of VAP, although susceptibility varies widely. Because mechanisms underlying VAP predisposition remained unknown, we assessed lower respiratory tract host immune responses and microbiome dynamics in 36 patients, including 28 COVID-19 patients, 15 of whom developed VAP, and eight critically ill controls. We employed a combination of tracheal aspirate bulk and single cell RNA sequencing (scRNA-seq). Two days before VAP onset, a lower respiratory transcriptional signature of bacterial infection was observed, characterized by increased expression of neutrophil degranulation, toll-like receptor and cytokine signaling pathways. When assessed at an earlier time point following endotracheal intubation, more than two weeks prior to VAP onset, we observed a striking early impairment in antibacterial innate and adaptive immune signaling that markedly differed from COVID-19 patients who did not develop VAP. scRNA-seq further demonstrated suppressed immune signaling across monocytes/macrophages, neutrophils and T cells. While viral load did not differ at an early post-intubation timepoint, impaired SARS-CoV-2 clearance and persistent interferon signaling characterized the patients who later developed VAP. Longitudinal metatranscriptomic analysis revealed disruption of lung microbiome community composition in patients who developed VAP, providing a connection between dysregulated immune signaling and outgrowth of opportunistic pathogens. Together, these findings demonstrate that COVID-19 patients who develop VAP have impaired antibacterial immune defense weeks before secondary infection onset.


Sujets)
Pneumopathie infectieuse , Maladie grave , Infections bactériennes , Syndrome respiratoire aigu sévère , Pneumopathie infectieuse sous ventilation assistée , Infections de l'appareil respiratoire , COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.24.21250385

Résumé

Regular surveillance testing of asymptomatic individuals for SARS-CoV-2 has played a vital role in SARS-CoV-2 outbreak prevention on college and university campuses. Here we describe the voluntary saliva testing program instituted at the University of California, Berkeley during an early period of the SARS-CoV-2 pandemic in 2020. The program was administered as a research study ahead of clinical implementation, enabling us to launch surveillance testing while continuing to optimize the assay. Results of both the testing protocol itself and the study participants experience show how the program succeeded in providing routine, robust testing capable of contributing to outbreak prevention within a campus community and offer strategies for encouraging participation and a sense of civic responsibility.

SÉLECTION CITATIONS
Détails de la recherche